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A B S T R A C T

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder that is characterized by memory loss and 
changes in behaviours, associated with the presence of amyloid-beta and tau proteins in the brain, which in
terferes with the normal functioning of the brain. Recent studies have tried to establish the structural relationship 
between the gut microbiota and the brain referred to as the Microbiota–Gut–Brain Axis. The present study aims 
to investigate a 16S rRNA gene sequencing sample, to analyze the differences in gut microbiota between 116 AD 
patients and 60 healthy controls retrieved from NCBI ((PRJNA770746, PRJNA533610, and PRJNA811324). Each 
sample was retrieved, demuxed and denoised to remove low-quality and chimeric sequences. The feature table 
was then constructed to determine the alpha diversity. The Kruskal-Wallis test done for prediction of alpha di
versity calculated in patients with AD had a p-value of 0.0592. The bacterial features calculated through the 
Adonis test had a f-test value of 2.724 indicating huge microbial dysbiosis in the patient sample. Further ANCOM 
statistical test identified increased composition of Phocaeicola (clr 3.585), Bacteroides (clr 3.411) and Faecali
bacterium (clr 3.3165) while Avispirillum (clr − 1.0804) were found in reduced composition in patients with AD. 
The increasing microbes in Alzheimer’s disease patients could be attributed to alterations in diet, immune system 
changes, and metabolic disturbances that create a gut environment conducive to the growth of these specific 
bacterial communities. Therefore, it can be an essential research area for neurodegenerative diseases, advancing 
our knowledge of potential biomarkers and therapeutic targets for minimizing the burden of AD.

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder charac
terized by progressive cognitive decline, memory loss, communication 
problem, daily life challenges and behavioral changes. In the early 
stages of Alzheimer’s disease, individuals experience mild symptoms 
and can live independently. However, in the moderate and late stages, 
symptoms worsen, and they require full-time care and support. This is 
the most common type of the dementia and can be characterized by 
neurofibrillary tangles[1] where certain proteins (amyloid-beta and tau) 
build up abnormally in the brain, disrupting communication leading to 
cell death. Amyloid-beta (Aβ) forms clumps called Amyloid plaques 
outside the cells, while tau forms twisted fibres called neurofibrillary 
tangles inside the cells. These problems are especially common in areas 
like the medial temporal lobe (important for memory) and other parts of 
the brain’s cortex that are involved in complex thinking processes as 

shown in Fig. 1. This buildup of proteins disrupts normal brain function 
and leads to the development of Alzheimer’s disease where these pro
teins are secreted by gut. The intestine, also known as the gastrointes
tinal tract, is a complex system that regulates the digestion, absorption, 
and elimination of microorganisms that inhabit the human digestive 
tract, including bacteria, archaea, fungi, and viruses[17,25,28]. These 
play an important role in the regulation of mood, appetite and digestion, 
among other functions [54]. Effects of the gut on mood and emotions are 
important in the gut microbiome, which produces metabolites that 
affect mood, cognitive function, and behavior This intimate relationship 
gives rise to the gut-brain area. Growing evidence indicates that there is 
a bidirectional connection between the gut microbiota and the brain, 
which is called the Microbiota–Gut–Brain Axis [3]. The gut, often 
referred to as the second brain which produces hormones and neuro
transmitters that send signals to brain, influencing mood, cognitive 
function and behavior[27]. The bidirectional communication allows the 
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gut and brain to work together, sharing information and resources to 
maintain overall health and well-being [3,4]. Gut bacteria produce 
substances like amyloids and lipopolysaccharides, which change 
communication in the cell and cause inflammation in the body. These 
buildups of amyloid-beta (Aβ) in the brain [5, [24][26] disrupt its 
functioning and increase the chances of occurrence of the disease in the 
human body. This also leads to age-related memory problems and de
mentia. Changes in the gut microbiota can be one of the major reasons 
people develop such diseases, which means keeping our gut bacteria 
healthy can slow down the memory loss process [6] (see Table 5, Fig. 6 
and 7a and 12).

Employing high-throughput sequencing technologies, researchers 
can analyze vast amounts of genetic information, identify previously 
unknown or uncultured microbial species, and uncover the functional 
roles these microbes play in health and disease. Metagenomic studies 
have revealed altered functional pathways in the gut microbiome of 
Alzheimer’s patients, including changes in carbohydrate metabolism, 
amino acid synthesis, and detoxification processes. These findings un
derscore the potential of the gut microbiome as a critical factor in Alz
heimer’s disease progression and highlight its importance as a target for 
therapeutic interventions [52]. To gain a comprehensive understanding 
of microbial communities in the context of Alzheimer’s disease, re
searchers often analyze both alpha and beta diversity. Alpha diversity 
measures the richness and evenness of species within a single sample, 
providing insights into the overall microbial diversity in each environ
ment [13,56]. Metrics such as the Shannon index, Simpson index, and 
evenness are commonly used to quantify alpha diversity, with higher 
values indicating a more balanced and diverse microbial community. 
Beta diversity, on the other hand, compares the microbial diversity be
tween different samples, helping researchers assess how distinct mi
crobial communities are from one another. In the QIIME 2 pipeline, beta 
diversity is evaluated using metrics like Bray-Curtis dissimilarity, Jac
card index, weighted UniFrac, and unweighted UniFrac, which consider 
both the abundance and phylogenetic relationships of microbial species 
[14] as shown in Fig. 2.

The gut-brain axis is a well-documented pathway by which gut 
microbiota can influence brain health and function (see Fig. 3). The 
relationship between gut microbiota and neurological conditions, 
particularly Alzheimer’s disease (AD), has gained significant attention in 
recent years. Studies have shown that individuals with Alzheimer’s 
disease exhibit an altered gut microbiome. Alterations in gut microbiota 
composition have been linked to systemic inflammation, immune dys
regulation, and the production of neuroactive compounds, all of which 
are implicated in the development and progression of Alzheimer’s dis
ease, exhibiting unique microbiota signatures with observed differences 
in gut microbiota composition and diversity which suggest a possible 
link between microbiota diversity and Alzheimer’s disease [35]. Gut 
microbiotas are known to be influenced by numerous factors, including 

diet, lifestyle, and health status. Their composition can fluctuate with 
age, health conditions, and even within a short timeframe due to dietary 
changes[2,32]. This variability emphasizes the need for longitudinal 
studies to track microbial changes over time and their correlation with 
disease progression. Hence the altered gut microbiome of people 
suffering Alzheimer’s is analyzed in order to search for genes in gut 
bacteria and identify specific bacterial signatures associated with Alz
heimer’s disease [55]. Although metagenomics studies have revealed 
altered functional pathways in the gut microbiome of Alzheimer’s pa
tients, including changes in carbohydrate metabolism, amino acid syn
thesis, and detoxification processes [53], these findings suggest that the 
gut microbiome plays an important role in Alzheimer’s disease pro
gression and it helps in identifying therapeutic targets and biomarkers of 
neurological disorders.

2. Methods

Microbiome sequencing data can be analyzed and processed using 
the QIIME platform, the workflow for amplicon sequencing data in 
QIIME 2 is as follows.

2.1. Raw sequence retrieval

Raw sequence data required for hypothesis testing in this study were 
obtained from pooled biological samples using sequencing technology 
such as Illumina. These sequences, including nucleotide sequences 
including DNA, were obtained from BioProjects, Sequence Read Archive 
(SRA), and the PubMed database at the National Center for Biological 
Sciences (NCBI)[11]. Etc. Were obtained from large repositories The 
Data were primarily in paired-end format (where DNA is read from both 
ends) and single-end format (where DNA is read from one end), some 
being demultiplexed or multiplexed. To facilitate further analysis, the 
raw sequences were converted into. qza format, compatible with the 
QIIME 2 workflow[44].

2.2. Demultiplexing and denoising sequences

The first step involves multiplexing the sequence, which separates 
sequences based on sample-specific barcodes and outputs the front-end 
in paired-end sequencing, reading it combines from both ends to in
crease the accuracy. The QIIME 2 demux summarize tool was used to 
search and control sample attribution, ensuring accurate sample iden
tification and data preparation for microbiome analysis. After demulti
plexing, the denoised sequence [53] was performed using the QIIME 2 
DADA2 method. This process had four steps: trimming to remove infe
rior bases from read-ends, similarity distortion to assemble similar se
quences and reduce complexity [53], filtering to remove biased or 
erroneous sequences, remove chimeras to identify and exclude artifacts 

Fig. 1. Difference between the healthy brain and Alzheimer’s disease brain representing the shrinkage of the cerebral cortex due to tau neurofibrillary tangles.
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from PCR amplification and then visualize the noise-free sequences of 
the physical characteristics were generated for selection, followed by 
microbial community analysis was very accurate [15,16].

2.3. Feature table

The feature table in QIIME 2 contains the counts for each Amplicon 
Sequence Variant (ASV) in all samples. This table counts each unique 
ASV occurrence, facilitating in-depth analysis and classification. The 
correlational pattern annotation feature allows for the evaluation of 
sequence depth and rarity, which affects the retention or loss of patterns. 
Providing detailed information on ASV distribution, the feature table 
supports the analysis of microbial range and community structure.

2.4. Diversity analysis

Diversity analysis in microbiological studies determine the number 
and structure of bacteria in samples and compare these values between 
samples Alpha-species coefficients, such as Shannon index, Simpson 
index, and evenness, measure support species richness and evenness of a 

sample [49]. Beta diversity compares bacterial species between samples 
using disparity measure of distance core metrics phylogenetic analysis in 
QIIME 2 provides key metrics including Bray-Curtis dissimilarity, Jac
card index, weighted UniFrac, and unweighted UniFrac, which provide 
insight into differences in microbial communities and their responses to 
environmental factors.

2.5. Visualization of microbial community in gut

Bar plots and heatmaps are used in QIIME 2 to visualize microbial 
community data. Bar plots show the number of classes in each sample, 
facilitating comparative analysis across groups such as patients and 
controls. Heat maps represent quantitative data in matrix form, where 
color intensity indicates the relative abundance of classes, thus revealing 
patterns and relationships. These visual tools are important for under
standing microbial diversity and under the change in circumstances.

2.6. Representative sequence retrieval

Representative sequences were selected to identify groups of similar 

Fig. 2. Alpha and beta diversity representing the human microbes within sample and between sample depicting the intrinsic and comparative characteristics.

Fig. 3. Flowchart representing the complete study of the methodology for Identification, Isolation, and Analysis of Microorganisms.
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sequences derived from amplicon sequence data. Clustering is based on 
sequence similarity, followed by representative sequences for taxonomic 
classification and phylogenetic analysis. This approach simplifies data 
manipulation by focusing on a limited number of sequences, enabling 
accurate assessment of microbial community structure and diversity 
while preserving biodiversity on important information.

2.7. Taxonomy classification and phylogenetic analysis

Taxonomy involves the identification and classification of microor
ganisms based on their genetic structure. Using 16S rRNA sequences, 
sequences are compared to reference databases[29,45] to assign taxo
nomic labels from broad groups (e.g., phylum) to more specific ones (e. 
g., genus) The QIIME 2 pipeline generates microbial-descriptive taxo
nomic profiles composition of samples in detail. Manufacturing pro
cesses are visualized using stacks of wooden blocks, providing insight 
into microbial diversity and their role in the environment in conditions, 
such as Alzheimer’s between disease and healthy controls. Phylogenetic 
analysis is used to understand the evolutionary relationships among 
microorganisms [20]. Sequences and MAFFT alignments were generated 
using the qiime phylogeny align-to-tree-mafft-fasttree pipeline from the 
q2-phylogeny plugin and a phylogenetic tree was constructed using 
FastTree. This de novo method, which does not rely on reference data
bases, enables detection of evolution. A phylogenetic tree that also 
supports subsequent research on beta diversity helps to understand the 
evolutionary relationships and microbial communities associated with 
Alzheimer’s disease.

2.8. Statistical analysis

The ADONIS (Analysis of Similarities) test, a component of PER
MANOVA and a permutation-based method, was conducted to further 
confirm the importance of different categories of beta variables, these 
statistical methods are used to determine if there are significant differ
ences in microbiome composition between groups, such as control and 
diseased patients. It works by calculating distances between samples 
based on their microbial composition, using distance metrics like Bray- 
Curtis or UniFrac. The test then assesses whether the differences be
tween groups are greater than the variation within each group. The 
results of Adonis include a p-value, which indicates whether the dif
ferences are statistically significant (with a p-value less than 0.05 sug
gesting a significant difference), and an R-squared value, which shows 
how much of the variation in the data can be explained by the group 
differences. If the test shows a significant difference, it suggests that the 
disease may cause noticeable changes in the microbiome. On the other 
hand, if no significant difference is found, it means the microbiomes of 
control and diseased patients are quite similar. This method helps re
searchers understand whether diseases like Alzheimer’s might be linked 
to specific changes in gut microbial communities. ANCOM test stands for 
Analysis of Composition of Microbiomes and is used to differentially 
abundant features in a microbial dataset.

In the context of a microbiome study, QIIME2 pipeline with ANCOM 
(Analysis of Composition of Microbiomes) was used to compare groups 
of control and disease Alzheimer’s individuals and to identify abundant 
features such as differential bacteria[21]. ANCOM is a tool that defines 
the number or ratios represented in the form of a volcano plot.

3. Result

3.1. Study participants

The 16S rRNA sequencing data of Alzheimer’s patient was assessed 
through the Gene expression omnibus (GEO) database of NCBI. Only 
studies with patients between the ages of 40 and 80 were included. From 
the seven studies, three met this age criterion for a total of 176 samples 
obtained information from on an Alzheimer’s patient gut microbiome 

from Vancouver (Canada), Norwich, (UK) and Kazakhstan [7–9]. All 
three projects were chosen for their relevance to the analysis of gut 
microbiota in the context of Alzheimer’s disease (AD). These Bioprojects 
(PRJNA770746, PRJNA533610, and PRJNA811324), use Illumina 
NovaSeq 6000 platform and Amplicon assay type [48] to sequence stool 
or faecal samples. Of these, 116 samples came from those with clinically 
diagnosed AD and 62 control samples. These categorizations are 
detailed in Fig. 4 subjects with mental disorders not related to AD, or 
those not meeting our specified criteria, were excluded from the anal
ysis. The age difference shown in Table 1 highlights that AD is more 
prevalent in the older population. People with AD had a lower body 
mass index (BMI) [19], meaning they were lighter than the control 
group.

3.2. Demultiplexing and denoising samples

The final set of 176 samples from individuals suffering from Alz
heimer’s and healthy individuals were divided into two subgroups, i.e., 
single-ended data (involves reading only one end of a DNA fragment) 
and paired-ended data (involves reading both ends of a DNA fragment, 
producing two reads per fragment), according to 16S rRNA sequencing 
data[51]. The quality check of raw data was performed using FastQ 
programmer (the software tool used for this purpose). Sequence data 
were then processed by the QIIME 2 [10] pipeline. The initial step 
involved demultiplexing sequencing data obtained from NCBI to sepa
rate reads belonging to different samples taken with the following pa
rameters: sequence length = 250, Truculent = 0, trim left = 0, maximum 
expected error = 2.0, pooling method = independent, chimaera method 
= consensus, minimum fold parent in abundance = 1.0 in single-ended 
data and Truncate Sequence Length = 450, truncate length forward =
224, truncate length reverse = 184, trim left forward = 0, trim left back 
= 0, maximum expected error a forward = 2.0, maximum expected 
backward error = 2.0, minimum overlap = 12, pooling method = in
dependent, chimera method = consensus, minimum fold parent in 
number = 1.0 for paired-end data. The forward end (reads from one end 
of the data) and the reverse end (reads from the opposite end of the data) 
are both equally important because when combined they complete the 
DNA sequence, the quality of each base in the sequence such scored, 
which say accuracy of the reads That means errors can occur in the 
readings, especially near the end of the series. Truncating the minimum 
baseline ensures that only the most reliable information is retained for 
analysis. This improves the overall accuracy of the results by removing 
negative parts of the sequence.(see Fig. 5a, 5b and 5c

3.3. Alpha diversity analysis

Shannon and Simpson metrics were used to compare bacterial di
versity in individual samples between control and patient groups. These 
indices provide insight into microbial community richness and evenness 
and reflect species richness and diversity, which are shown through the 
boxplots.

These differences in alphas between control and patient groups were 
determined by the Kruskal-Wallis test. Statistical analysis of alphas be
tween control Alzheimer’s disease groups of patients reveals significant 
differences. Alpha rarefaction curves showed a 9.5 plateau at 6000 se
quences in (A) and 3.4 plateau at 2 sequences in (B), indicating sufficient 
sampling depth. Kruskal- Wallis tests yielded p = 0.05927 in (A) and p =
0.065477 in (B), suggesting borderline significant differences in di
versity between groupsFig. 6.

3.4. Beta diversity analysis

Beta diversity measures the differences in microbial community 
structure between different tissue samples. This compares diversity 
across multiple samples, providing insight into how microbial commu
nities vary across sites or conditions. Features of beta diversity include 
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unweighted: Jaccard index, unweighted UniFarc and weighted: Bray- 
Curtis distance, Weighted UniFarc. These helps in understanding the 
similarities or dissimilarities among the samples based on the presence, 
absence or abundance of different microbial taxa [47][50].

3.5. Emperor PCoA plot - Bray-Curtis

These tools highlight differences in community composition between 
groups. In plots (A) and (B), the clustering of groups shows that similar 
samples are grouped together, while the dispersion reflects the diversity 
within each group. Overlapping areas indicate similarity, and outliers 
represent unique community compositions. This analysis revealed sig
nificant differences in community compositions among groups, 
explaining 28.445 % in (A) and 12.62 % in (B) of variations which 
suggest disease associated changes in microbial communityFig. 7a.

3.6. Unweighted UniFrac PCoA

The Unweighted UniFrac PCoA plot provides insight into the mi
crobial species present in control patients and their relationships. In 
plots (A) and (B), the clustering indicates that similar samples are 
grouped closely, while the dispersion highlights the diversity within 
each group. Overlapping regions suggest similarities, and outliers indi
cate unique community compositions. Plot (A) accounts for 35.484 % of 
the variation, while plot (B) shows 33.981 %, indicating that the samples 
are relatively similar (see Fig. 7b).

3.7. Weighted UniFrac PCoA

Weighted UniFrac PCoA suggests both the abundance of species and 
their evolutionary relationships between samples. In plots (A) and (B), 
the clustering indicates that similar samples are grouped closely, while 
the dispersion highlights the diversity within each group. Overlapping 
regions suggest similarities, and outliers indicate unique community 
compositions. Plot (A) revealed 49.891 % and (B) revealed 61.05 %, 
variations among groups indicating significant microbiome differences, 
suggesting distinct evolutionary relationships (see Fig. 7c).

3.8. Jaccard PCoA

These plots illustrate how the microbial composition varies between 

Fig. 4. Flowchart depicting the sample extraction process, where “n” represents the total number of samples. The total number of samples obtained was 175 while 7 
were dropped out and 532 were not subjected to screening.

Table 1 
Study subjects of diseased and healthy controls.

Characteristics Control (n = 65) Patient (n = 118)

Age, median 42 70
BMI, median 25 23
Female % 44 % 55 %
Male % 22 % 77 %

Fig. 5a. (A) Shows the histogram distribution of forward reads frequencies across samples in single-end data and (B) Shows the quality score distribution of forward 
reads. Truncation and trimming positions indicated in the single-end data.
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controls and patients based on the presence or absence of certain spe
cies. In plots (A) and (B), clustering shows that similar samples are 
closely grouped, while dispersion highlights the diversity within each 
group. Overlapping areas indicate similarities, and outliers represent 
unique community compositions. In plot (A), the analysis identified 
moderate differences, accounting for 15.261 % of the variation, whereas 
plot (B) revealed smaller differences in species, explaining 10.948 % of 
the variation. This suggests that disease-associated changes in microbial 
community composition exist, with a shared core of microbes among the 
groups (seeFig. 7d).

3.9. Visualization of gut diversity

Heatmap was constructed using QIIME 2 feature-table heatmap tool, 
which was accessed through Galaxy Server Europe platform. Heatmaps 
are graphical representations of data where individual values are rep
resented as colors. In the context of microbial community analysis, 
heatmaps are used to visualize the abundance or presence of different 
microbial taxa across multiple samples darker colors for higher abun
dance and lighter colors for lower abundance in taxa abundance. Species 
shows a high abundance (dark color) in diseased patients but a low 
abundance (light color) in healthy control, it indicates that species are 
more in the diseased group. The reverse pattern (higher in controls, 
lower in cases) suggests that species may be more common in healthy 
populations. Control patients may have different coloration compared to 
diseased patients, indicating different microorganisms. These differ
ences can help researchers identify species linked to disease or health. In 
heatmap matrix (A), OTUs 4 to 8 are found to be highly abundant in 
certain samples, while OTUs 9 to 14 are less abundant in most samples. 

OTUs 1 to 3 show moderate abundance across the samples. In heatmap 
matrix (B), OTUs 21 and onwards are associated with high abundance, 
while OTUs 1 to 20 are less abundant. The dominant families, Firmicutes 
and Bacteroidota, have been associated with various diseases, including 
inflammatory bowel disease and obesity, particularly when their bal
ance is disrupted (see Fig. 8).

3.10. ADONIS test results

The Adonis test results confirmed the significant difference in beta 
variables between control and patient groups, with a p-value of 0.013 
indicating a statistically significant difference R-squared value of 0.0182 
indicating the variability of microbial community structure within 3.5 % 
results indicate that there is a statistically significant difference in the 
microbial community composition between the groups analyzed, with 
the grouping variable explaining a small but significant portion of the 
total variance in single-end data and for paired-end data the p-value 
(0.968) indicates that any observed differences between groups are not 
statistically significant. The R-squared value is negative (− 0.001108), 
which is not interpretable in the usual sense. Statistical differences be
tween the healthy and disorganized conditions were converted to sta
tistics using the Adonis test for beta and measures of variability17,18.

3.11. Faecal microbiota analysis

To characterise the gut microbiome in Alzheimer’s disease, we 
examined the composition and diversity of bacterial communities in 
patients with confirmed disease compared to controls at different 
phylogenetic and phylogenetic levels. The X-axis represents the 

Fig. 5b. Histogram showing the distribution of forward reads (A) and reverse reads (B) frequencies across samples in paired-end data.

Fig. 5c. Quality score distribution of forward reads (A) and reverse reads (B) Truncation and trimming positions indicated in paired-end data.
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frequency of each taxon, while the Y-axis groups the samples into con
trol patients. The analysis was conducted at two taxonomic levels: genus 
and species, which means that classes were observed at both the broad 
bacterial level (phyla) and the specific level (genus).

Phylum-level analysis: This is one of the most extensive taxonomic 
levels and helps to identify major bacterial groups. In one-ended pair
wise conclusions, Bacteroidota and Firmicutes predominated in AD pa
tients and controls. This suggests that these two phyla are key players in 

the gut microbiome irrespective of disease status.

3.12. Genus-level analysis

At the genus level, the analysis shows more specific bacterial groups, 
which is important for understanding how particular bacteria are asso
ciated with disease or health as shown in Fig. 9. High relative abundance 
indicates that a particular taxon is more prevalent in that group, 

Fig. 6. (A) Shows alpha rarefaction curves depicting Shannon diversity across different sequencing depths for each sample. Plateaus indicate sufficient sampling 
depth in single-end data and (B) showing Alpha rarefaction curves depicting Shannon diversity across different sequencing depths for each sample. Plateaus indicate 
sufficient sampling depth in paired-end data.

Fig. 7a. Emperor plot of PCoA matrix computed from Bray-Curtis dissimilarities, highlighting abundance-based compositional differences between AD patient 
samples (blue dots) and control samples (red dots) in (A) single-end data and (B) paired-end data.
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providing a detail view of community composition at this taxonomic 
level.

3.13. Differential microbes abundance comparison within the groups

In the ANCOM analysis, the clr (centred log ratio) transformed OTU 
table was used at the genus level to adjust zero values to one. There are 
different bacterial taxa whose relative abundances in the gut micro
biome are measured and compared between the control and disease 
groups. In Fig. 10, each point represents a bacterial taxon [23]. In 
single-end data, the figure indicates d Bacteria; p Firmicutes_A; c Clos
tridia_258,483; o Oscillospirales; f CAG272; g Avispirillum as the bacterial 
feature of two groups control and disease group with clr − 1.0804. The 
abundance of the bacterial feature Avispirillum is lower in the diseased 
group compared to control group which indicates more variability in 
bacterial abundance among control individuals. In paired-end data it 
indicates three bacterial features i.e., d Bacteria;p Bacteroidota;c 

Bacteroidia;o Bacteroidales;f Bacteroidaceae;g Phoca eicola_A_858,004, 
d Bacteria;p Bacteroidota;c Bacteroidia;o Bacteroidales;f_Bacteroidaceae; 
g_Bacteroides_h,d_Bacteria;p_Firmicutes_A;c_Clostridia_258,483: o _Oscil
lospirales;f_Ruminococcaceae;g Faecalibacterium. With clr 3.585, clr 
3.411, clr 3.3165 respectively. All three bacterial features show signif
icantly higher abundance in the diseased group in comparison to the 
control group (see Fig. 10 , Fig. 11).

3.14. Statistical significance

ANCOM analysis revealed several features with significant differ
ences in abundance between the control and patient groups [39]. Ta
bles 2 and 3provide a summary of these features, including their 
W-statistics and the outcome of the null hypothesis test (see Table 4). 
Table 5 provides differentially abundant features identified through 
ANCOM, including W-statistics and results of null hypothesis test in 
paired-end data (see Table 5).

Fig. 7b. Emperor plot of PCoA matrix computed from unweighted UniFrac, illustrating microbial community composition differences between AD patient samples 
(blue dots) and control samples (red dots) in (A) paired-end data and (B) single-end data.

Fig. 7c. Emperor plot of PCoA matrix computed from weighted UniFrac, showing compositional differences Influenced by abundances between AD patient samples 
(blue dots) and control samples (red dots) in (A) single-end data and (B) paired-end data.

Fig. 7d. Emperor plot of PCoA matrix computed from Jaccard distances, depicting presence-absence dissimilarities between AD patient samples (blue dots) and 
control samples (red dots) in (A) single-end data and (B) paired-end data.
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Avispirillum: These are member of the Firmicutes phylum and is 
associated with the gut microbiome. It has been shown to play a role in 
maintaining gut health and can modulate inflammation. Although we 
found no significant differences in levels, any changes in gut microbiota 
may affect systemic inflammation, which is known to affect neurological 
diseases, but the specific role of Avispirilm in Alzheimer’s disease re
mains unclear is elusive because there is no information linking these 
viruses.

Phocaeicola: They are the part of the Bacteroidetes phylum, Phocaei
cola is involved in breaking down complex carbohydrates in the gut, 
changes in the abundance of Bacteroidetes have been linked to various 
health conditions, including inflammatory diseases. While our study 
didn’t find a significant difference, shifts in this genus might still in
fluence gut health and, indirectly, brain health through gut-brain axis 
interactions [37,40].

Bacteroides: Also, a member of the Bacteroidetes phylum, Bacteroides 
species are known for their role in digestion and modulation of immune 
responses. Bacteroides have been implicated in several diseases due to 
their role in gut health and systemic inflammation [40]. Although no 
significant differences were found in our analysis, fluctuations in this 
genus could potentially impact brain function through inflammatory 
pathways.

Faecalibacterium: This genus, belonging to the Firmicutes phylum, is 
considered beneficial for gut health. It is known for its anti- 
inflammatory properties. These has been associated with reduced 
inflammation and improved gut barrier function. In Alzheimer’s disease, 
a reduction in beneficial bacteria like Faecalibacterium could potentially 
contribute to increased inflammation and neurodegeneration [41,42].

4. Discussion

This study presents research on the gut microbiota of individuals 
suffering with Alzheimer’s disease. Certain bacterial populations may 
become imbalanced, leading to dysbiosis. Dysbiosis can contribute to 
increased intestinal permeability, often referred to as “leaky gut,’ 
allowing microbial metabolites and toxins to enter systemic circulation. 
This, in turn, can lead to neuroinflammation and other pathological 
processes associated with Alzheimer’s, such as the accumulation of tau 
proteins and amyloid beta.

The findings suggest that 16S rRNA sequencing and bioinformatics 
analysis using QIIME2 analyzed regions of the gut microbiota of in
dividuals with Alzheimer’s disease compared to healthy controls. The 
findings revealed marked differences in the number of bacterial com
munities between the AD diseased and control groups, shedding light on 

Fig. 8. Heatmap matrix, illustrating correlations between abundance in microbial taxa in (A) single-end data and (B) paired-end data.
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potential pathological implications. The application of ANCOM (Anal
ysis of Composition of Microbiomes) to our dataset identified several 
microbial taxa with differences in abundance between Alzheimer’s pa
tients and healthy controls. These findings suggest that gut microbes are 
dynamic and change over time, especially in response to dietary and 
health-related factors. This plasticity indicates that while gut microbes 
may not be the primary cause of Alzheimer’s, they are undoubtedly one 
of the contributing factors influencing disease progression among in
teractions between gut microbiota and brain health [36]. However, the 
taxa investigated, Avispirillum (classified within ‘d__Bacteria;p__Firmicu
tes_A;c__Clostridia_258,483;o__Oscillospirales;f__CAG-272′) was found to 

have a W statistic of 1381. This indicates that while ‘Avispirillum’ 
showed some differential abundance between groups. Therefore, our 
study suggests that ‘Avispirillum’ does not have a significant impact on 
the differences observed between Alzheimer’s patients and controls. 
However, it is important to recognize that the absence of significant 
differential abundance does not imply a lack of relevance [38]. Simi
larly, the taxa Phocaeicola and ‘Bacteroides (both within the ‘Bacter
oidaceae’ family, ‘Bacteroidota’ phylum) exhibited W statistics of 357. 
These bacteria are integral to the breakdown of complex carbohydrates 
in the gut and have been associated with inflammatory and metabolic 
processes [39]. This group of bacteria can influence the metabolism of 
neurotransmitters and modulate the gut-brain axis, impacting mood and 
cognitive functions. Although our results do not indicate a significant 
difference in their abundance, changes in the composition of these 
bacteria may still influence the gut-brain axis, potentially affecting the 
pathophysiology of Alzheimer’s disease through indirect mechanisms. 
In particular, Bacteroides fragilis strain of Bacteriodes spp and their me
tabolites 12-hydroxy-heptadecatrienoic acid (12-HHTrE) and Prosta
glandin E2 (PGE2) activate microglia and induce AD pathogenesis in 
neuronal C/EBPβ transgenic mice models [55]. Elevated levels of 
12-HHTrE and PGE2 corresponds to elevated levels of aggregated am
yloid beta plaques. As amyloid beta plaques accumulate, harmful cyto
kine levels rise, resulting in a detrimental feedback cycle. To further 
comprehend the microglial stimulatory action, bioactive metabolites 
involved in the activation process were found. Metabolite identification 

Fig. 9. Bar plot of taxonomic composition at the Genus level, highlighting the distribution of bacterial genera in control and diseased patient groups in (A) single-end 
data and (B) paired-end data.

Fig. 10. Composition of the bacteria present in the AD group representing their 
clr values, Positive values indicate higher abundance in the disease group, 
while negative values indicate higher abundance in the control group.
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was conducted using germ-free 3xTg mice and Abx-treated C/EBPβ 
transgenic mouse models. After then, HHTrE and PGE2 were identified. 
Both of these chemicals were discovered to be raised in the brain and 
faeces of mice. The two identified bioactive compounds were adminis
tered to Thy1-C/EBPβ transgenic mice, resulting in the same stimulation 
of microglia and neuroinflammation observed in Germ-free 3xTg mice 
and Abx-treated C/EBPβ transgenic mouse models [55]. Bacteroides 
modulate microglia eventually altering the levels of amyloid beta and 
tau levels in the body. To better understand this, young APP/PS1 mouse 
models were considered. B. fragilis inhibited the production of proteins 
involved in receptor-mediated phagocytosis, phagosome formation and 

maturation, and engulfed protein degradation in microglia from young 
APP/PS1 mice. Stimulating microglia with TLR4-dependent lipopoly
saccharide (LPS) can decrease autophagy, impairing its ability to 
breakdown phagocytised Aβ. Blocking TLR2 signaling has been 
demonstrated to enhance microglial lysosomal Aβ breakdown. Thus the 

Fig. 11. ANCOM Volcano Plot showing differentially abundant features between control and patient groups. W statistic is plotted against clr-transformed abun
dances in single-end data. Points far to the right or left (high effect size) and high up (high significance) indicate taxa that are both significantly and substantially 
different in abundance between the two groups [22]. A point far to the right and high up might represent a bacterium that is significantly more abundant in the AD 
group compared to the control group and a point far to the left and high up might represent a bacterium that is significantly more abundant in the control group 
compared to the AD group.

Fig. 12. ANCOM Volcano Plot showing different features between control and patient groups. W statistic is plotted against clr transformed abundances in paired-end 
data. Points far to the right or left (high effect size) and high up (high significance) indicate taxa that are both significantly and substantially different in abundance 
between the two groups [22]. A point far to the right and high up might represent a bacterium that is significantly more abundant in the AD group compared to the 
control group, and a point far to the left and high up might represent a bacterium that is significantly more abundant in the control group compared to the AD group.

Table 2 
This table displays the phyla that were more abundant in AD patients as 
observed from Single-End and Paired-End data.

Phylum Single-End Data 
(%)

Paired-End Data 
(%)

Condition

Verrucomicrobiota 25.249 73.981 AD
Methanobacteriota_A_1229 17.289 - AD
Proteobacteria 71.306 - AD
Firmicutes_D - 80.597 AD
Actinobacteriota - 33.333 AD

Table 3 
This table shows the relative abundance of various genera in AD patients and 
controls as observed from Single-End and Paired-End data.

Genus Single-End Data 
(%)

Paired-End Data 
(%)

Condition

Bifidobacterium_388,775 17.806 33.333 Control
Ruminococcus_E 22.857 - Control
CAG-27 43.990 - Control
Blautia_A_141,781 - 44.444 Control
Parabacteroides_B_862,066 - 22.222 Control
Fimenecus - 35.714 Control
Prevotella 47.140 100.000 AD
Phocaeicola_A_858,004 23.033 100.000 AD
Akkermansia 25.238 73.981 AD
Sphingomonas_L_486,704 63.464 - AD
Methanobrevibacter_A 17.284 - AD
Bacteroides_H - 50.000 AD
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mechanism of action by which B. fragilis inhibits Aβ clearance was un
derstood [56]. The genus Faecalibacterium (within ‘d__Bacteria;p__Firmi
cutes_A;c__Clostridia_258,483;o__Oscillospirales;f__Ruminococcaceae’), 
which is known for its anti-inflammatory properties, also did not exhibit 
significant differences in abundance between the patient and control 
groups, as indicated by a W statistic of 352. ‘Faecalibacterium’ is a critical 
component of a healthy gut microbiome, and its presence is often 
associated with reduced inflammation [41] and a more robust gut bar
rier. It produces short-chain fatty acids (SCFAs) that help modulate 
immune responses. A decrease in Faecalibacterium levels may exacerbate 
inflammatory processes in the brain. To gain a better insight, Fp14 strain 
of Faecalibacterium prausnitzii was selected. This selected strain was 
pasteurised and this pasteurization Fp14 strain yielded better results 
than live Fp14 strain in PA test for cognitive memory impairment. To 
understand efficacy of Fp14 metabolome and RNA-seq analyses of the 
hippocampus was done. The results of metabolome research revealed 
that Fp14 drastically reduced thymine and 6 mA while also reducing 
suberic acid. Thymine glycol, an oxidised form of thymine, has been 
found to accumulate in the brains of AD patients. Second, 6 mA was 
found to increase with prolonged restraint stress in mouse brains, which 
was linked to an increase in reactive oxygen species (ROS) generation in 
mitochondria. Third, dicarboxylic acids (DCAs), such as suberic acid and 
azelaic acid, are produced by the oxidative degradation of unsaturated 
fatty acids and are known to affect mitochondrial activity. This evidence 
revealed a link between the efficiency of pasteurised Fp14 against 
oxidative stress and mitochondrial activity. Results from RNA-seq 
analysis revealed that pasteurised Fp14 drastically lowered PACS-2 
transcript levels. PACS-2 has been linked to a variety of disorders, 
including Alzheimer’s disease, and is thought to play key roles in 
mitochondrial dynamics. This evidence reinforced the link between 
pasteurised Fp14 and mitochondrial activity in the brain [57]. Although 
these bacteria may not be present in high abundance, their mere pres
ence suggests they could play a role in the development of Alzheimer’s 
disease. They may either contribute directly to disease mechanisms or 
influence other physiological activities in the body that exacerbate the 
condition. Their effects, even in low quantities, could be significant 
enough to impact gut health and, subsequently, brain function.

Alzheimer’s disease is a multifactorial disease with various genetic, 
environmental, and lifestyle influences. The contribution of the gut 
microbiome to Alzheimer’s disease can vary greatly among individuals, 
making it difficult to identify a single microbial signature associated 
with the disease. Moreover, the cross-sectional nature of the study might 
not capture the dynamic changes in gut microbiota over time, which 
could be more relevant to the disease’s progression[18,43][30,31,34]. 

Future research should consider these interactions and use holistic ap
proaches such as metagenomics and metabolomics to gain a deeper 
understanding of the role of gut microbiota. The findings from this study 
suggest several avenues for further investigation. First, longitudinal 
studies that track changes in gut microbiota composition over time in 
Alzheimer’s patients could provide more insight into how these changes 
correlate with disease progression. Additionally, larger sample sizes may 
help to detect more subtle differences in microbial abundance that were 
not captured in this analysis. Functional studies are also needed to 
explore the specific roles that these bacteria play in the gut-brain axis. 
For example, research into the metabolic pathways influenced by ‘Avi
spirillum’, ‘Phocaeicola’, ‘Bacteroides’, and ‘Faecalibacterium’ could reveal 
how changes in these bacteria affect the production of neuroactive 
compounds, inflammatory mediators, or other factors that could influ
ence brain health. Moreover, understanding how these bacterial changes 
impact the host’s immune response and gut barrier integrity could 
provide insights into their potential role in neurodegenerative diseases. 
For instance, does a reduction in beneficial bacteria like ‘Faecalibacte
rium’ lead to increased gut permeability, systemic inflammation, and 
subsequent neuroinflammation? Or do changes in ‘Bacteroidota’ species 
alter the immune system in ways that could exacerbate or mitigate 
Alzheimer’s disease?

5. Conclusion

The link between gut microbiota and Alzheimer’s disease un
derscores the importance of a holistic approach to health, emphasizing 
diet, lifestyle, and microbial balance. While gut microbes are not the sole 
cause of Alzheimer’s, they play a significant role in its progression. By 
focusing on maintaining a healthy gut microbiome through dietary and 
lifestyle choices, we may be able to influence the course of Alzheimer’s 
disease and improve overall brain health. Further research is essential to 
fully understand the complexities of this relationship and to develop 
effective interventions. This conclusion is supported by the under
standing that Alzheimer’s disease is a multifactorial disorder, resulting 
from the interplay of various disease pathways. The complexity of this 
disease suggests that multiple factors, including gut dysbiosis, 
contribute to its pathogenesis, ultimately leading to the manifestation of 
this chronic condition.
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