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A B S T R A C T

Epilepsy refers to the occurrence of two or more than two reiterative seizures. The occurrence of seizure is 
governed by the excessive electrical discharges in the cortex of the brain. Bioinformatics is crucial in diagnosing, 
prognosticating, and treating neurological disorders. It uses methodologies, computational tools, software, and 
databases to probe disease molecular underpinnings and identify biomarkers. It aids clinicians in addressing 
patient parameters and translational research. Artificial neural networks (ANNs) are computer models that 
attempt to mimic the neurons present in the human brain. This computerized neuronal model is used for 
analyzing and comprehending large and complex data sets. In the present study, three GEO datasets 
(GSE190451, GSE140393, and GSE134697) were retrieved from NCBI for the identification of differentially 
expressed genes using the DESeq2 package. The study identified 7 up-regulated genes (PRRC2A, FCGR3B, HLA- 
DRB, ENSG00000280614, ENSG00000281181, SLN, C4A) in patients with epilepsy. Furthermore, WEKA soft
ware was used for feature selection and classification of DEGs using feature selection algorithms namely Cor
relation Feature Selection, ReliefF, and Information Gain and classification methods such as Logistic regression, 
Classification via regression, Random forest, Random subspace, and Logistic model trees. After the analysis, out 
of the 7 genes, the C4A gene was removed as it yielded the lowest feature selection statistics. Lastly, R Studio was 
used for constructing the Artificial Neural Network of the 6 identified DEGs. The model’s performance was 
evaluated using the “pROC” R package, and an AUC of 0.720 was obtained, indicating that the model had 
excellent classification accuracy. The NeuralNet package of R revealed that PRRC2A had the highest generalized 
weight value indicating the increased expression of these genes when all other parameters are constant. 
Therefore, PRRC2A can be used as a potential biomarker for the diagnosis of epilepsy.

1. Introduction

Epilepsy is a class of neurological disorder that is best defined as the 
occurrence of two or more two reiterative seizures. The occurrence of 
seizure is governed by the excessive and abnormal electrical discharges 
in the cortex of the brain1. A seizure can either be provoked or 

unprovoked1. Provoked seizures are the ones that occur as a result of low 
blood sugar levels, alcohol withdrawal, low blood sodium levels, fever, 
and brain infection2. Unprovoked seizures as the name says occur 
without a known cause. Stress or sleep deprivation may further aggra
vate this type of seizure3. Epilepsy affects around 50 million individuals 
worldwide. Based on origin, epilepsy can be categorized into three 
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different types namely: acquired/symptomatic, cryptogenic, and idio
pathic. The acquired type of epilepsy is characterized by an identifiable 
cause. These seizures result from any sort of trauma, the presence of a 
tumor, or from meningeal infections. The cryptogenic type of epilepsy, 
as the name says is provoked by an unidentified cause. Idiopathic type of 
epilepsy also refers to the epilepsy provoked by an unidentifiable cause 
however it has a genetic basis. Epileptic seizures can be further classified 
broadly into two categories: Convulsive and Non-convulsive. Convulsive 
seizures are the most common type of seizures which involve repeated 
involuntary relaxation and contraction of muscles in the body thereby 
leading to uncontrolled shaking 4. Non-convulsive seizures occur as a 
result of altered mental status5,6. Generalized seizures are those which 
affect both the hemispheres of the brain and impair consciousness with 
no apparent cause. Whereas focal seizures are those which affect only 
one hemisphere of the brain. Epilepsy is a neurological disorder, most 
accurately characterized by (i) the occurrence of two unprovoked sei
zures after a 24-hour gap, (ii) the occurrence of a single unprovoked 
seizure and a probability of manifestation of other seizures over 10 
years, (iii) the identification of a specific epilepsy syndrome through 
diagnostic evaluation. These definitions and classifications are estab
lished by ILAE (International League Against Epilepsy), which aids in 
gaining a better understanding of epilepsy and developing strategies to 
eradicate it. The major factors contributing to the development of epi
lepsy include genetic and acquired factors however in most cases the 
main factor which is responsible for the development of epilepsy re
mains unknown1. Epilepsy occurs as a result of single gene defects7. This 
single gene defect occurs in genes that code for ion channels, enzymes, 
and G-protein coupled receptors thereby affecting the functionality of 
these biological entities8. Phakomatoses are another important factor 
promoting epilepsy, they are a group of diseases that affect ectodermal 
structures such as the central nervous system, skin, and eyes. A vast 
majority of phakomatoses are single-gene disorders that may be 
inherited in an autosomal dominant, autosomal recessive, or X-linked 
pattern9. One such example is the Tuberous sclerosis complex caused by 
mutations the in TSC1 or TSC2 gene which results in the up-regulation of 
the mTOR pathway leading to the growth of tumors in multiple organs of 
the body and eventually promoting an increased level of neural excit
ability10,11. GABAergic neurons which are regarded as the inhibitory 
neurons are lost, leading to an increased hyperexcitability of the neural 
networks12. Excessive release of the neurotransmitter glutamate after a 
brain injury results in excitotoxicity, which causes it to be excessively 
depolarized, intracellular Ca2 + concentrations sharply increase, even
tually resulting in cellular damage or death13. Under BBB disruption, 
albumin was found to leak from the blood into the brain parenchyma 
and activate the transforming growth factor beta receptor inducing 
epileptogenesis14–16. Bioinformatics plays a key role in understanding 
and managing neurological disorders by helping with early diagnosis, 
predicting disease outcomes, and finding effective treatments. It uses 
various methods, computational tools, software, and databases to study 
the molecular causes of diseases and identify novel biomarkers. Bioin
formatics helps clinicians address fundamental questions and inquiries 
based on every individual patient parameter, encompassing disease at
tributes, laboratory findings, proteomic, genomic, and metabolic data, 
along with other pertinent information. Bioinformatics has also helped 
turn research findings into real-world medical applications, supporting 
the discovery of new drugs and diagnostic markers. Although many 
potential biomarkers have been found using computer-based methods, 
only a few have been fully tested and confirmed in clinical trials.17. A 
major challenge with the rapid growth of bioinformatics is the huge 
amount of data being produced. This large volume of data makes it 
difficult to analyze using traditional methods, which are no longer 
effective. As a result, getting accurate answers has become a tough 
task.18. Machine learning, situated at the intersection of various disci
plines within bioinformatics, encompasses a category of algorithms 
driven by data analysis. These algorithms aim to address specific issues 
by scrutinizing patterns within datasets, often focusing on one specific 

factor10. The application of these methodologies, renowned for their 
adaptability and efficacy, has gained extensive traction in the realm of 
biology, notably in investigations centered on the discovery of bio
markers19,20. This widespread utilization has given rise to a diverse 
array of machine learning algorithms and methodologies21,22. Artificial 
neural networks (ANNs) are computer models that attempt to mimic the 
neurons present in the human brain. This computerized neuronal model 
is used for analyzing and comprehending large and complex data sets. 
The learning process in Artificial Neural Networks (ANNs) is determined 
by how the various network components are mathematically connected. 
This enables the network to detect patterns in data by assigning numbers 
(also known as weights) to inputs and adjusting them as more data is 
processed, allowing the network to improve over time. ANNs’ primary 
advantages are their ability to handle errors well and make accurate 
predictions or classifications, even for new or unlearned data that they 
have never seen before. A neural network is made up of three parts: an 
input layer, a hidden layer, and an output layer. The input layer, as the 
name suggests, contains input features. The ’hidden’ layer refers to the 
mathematical calculations performed by the model. The output layer is 
the last, containing the network’s output data. This makes them ideal for 
biomarker studies which resulted in their use in generating panels of 
biomarkers23. The architectural foundation of Artificial Neural Net
works (ANNs) is rooted in the perceptron, a singular artificial processing 
neuron endowed with adjustable weights, a bias, and an activation 
threshold. However, the perceptron is limited to classifying non-linearly 
separable patterns, relying on error occurrence during testing for 
learning. In practice, ANNs typically employ a Multi-Layer Perceptron 
(MLP), a configuration comprising multiple perceptrons. The input data 
is processed in steps: first, they handle the input variables, then they use 
activation functions to detect important features, and finally, they 
generate the output or result24. The transcriptome denotes the complete 
collection of RNA transcripts within a specific cell, of a defined devel
opmental stage or physiological state25. A comprehensive understanding 
of the transcriptome is imperative for elucidating the functional con
stituents of the genome and deciphering the underlying mechanisms 
governing development and pathological conditions26. High-throughput 
RNA-level investigations have historically employed microarray tech
nologies, facilitating the identification of differentially expressed genes 
across developmental stages or between cohorts of healthy and diseased 
subjects27. However, the emergence of RNA-seq, driven by advance
ments in sequencing technologies, has rapidly supplanted microarray 
methodologies due to its superior resolution and heightened 
reproducibility28,29.

In this study, comparative analyses of gene expression data were 
performed to identify differentially expressed genes with a prime aim to 
ultimately identify potent markers for epilepsy. These genes were then 
subjected to machine learning algorithms for feature selection and 
classification of DEG’s. Lastly, Artificial neural networks were con
structed to identify potent biomarkers30,31.

2. Materials and methods

2.1. Data Retrieval

63 Datasets were identified from GEO32 and SRA33 databases of 
NCBI34, as these datasets were transcriptomic. Out of the 63 identified 
studies 3 were selected and subsequently utilized in further research. 
These studies were selected because all of them affected the Temporal 
Neocortex region of the brain and led to the development of Temporal 
Lobe Epilepsy. One of the studies also showed that the PAX6 cells in the 
brain were being affected35. Fig. 1.

2.2. Pre-processing and alignment of data

FASTQC tool was used to perform the quality check on each sample. 
FASTQC is designed to offer an easy and efficient way to perform quality 
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checks on raw sequence data generated from high-throughput 
sequencing. It filters out low-quality sequences, resulting in extremely 
accurate results38. Following the quality check, the sequences were 
trimmed to remove the adapter sequences, this task was performed using 
the Trimmomatic tool39. Trimmed Samples were then aligned with a 
reference genome of Homo sapiens and were done using HISAT2. It en
ables extremely fast and sensitive read alignment, particularly for reads 
spanning two or more exons40. Then FeatureCounts tool was used to 
count RNA-Seq reads for understanding the genomic features41.

2.3. Identification of differentially expressed genes

The differentially expressed genes in the samples were analyzed 
using the DESeq2 Tool42. This tool generates output in tabular files as 
well as graphical results in PDF format. To identify the up-regulating 
genes the tabular file containing the data about the DEGs was filtered 
based on the p adjusted and log2 fold chain value.

2.4. Feature selection and classification of DEGs using Machine learning 
algorithm

The Weka software43 was used for feature selection. Important fea
tures were first identified using three feature selection algorithms: In
formation Gain44, Correlation Feature Selection45, and ReliefF46. Then, 
to predict genes in the up and down categories, five widely used clas
sifiers i.e Logistic Regression47, Classification Via Regression48, Random 
Forest49, LMT50, and Random Subspace51 were employed, which have 
been applied to solve various classification and prediction problems in 

biology, which showed comparable or even higher performance results 
than other commonly used machine learning algorithms.

2.5. Biomarker discovery using Artificial neural network

After feature selection, the artificial neural network was constructed 
using the NeuralNet package available in R studio52. RStudio is a data 
analysis tool for importing, accessing, transforming, plotting, and 
modeling data, as well as for machine learning to make predictions on 
data53. The artificial neural network constructed usually contains a 
single input, hidden, and output layer. To further validate the neural 
network, the area under characteristic (AUC) and receiver operating 
characteristic (ROC) curve of the training set in the “pROC” R package 
was used54.

3. Results

3.1. Data collection

The Datasets were collected using NCBI, GEO, and SRA. Only those 
were selected which were transcriptomic, had epilepsy as the disease, 
and whose expression profiling was performed by High Throughput 
Sequencing. Out of the 63 identified studies only 3 of them were selected 
for further research because they had a significantly smaller number of 
patients and control sample ratio and affected the neocortex region of 
the brain Table 1.

Fig. 1. Flowchart depicting the pipeline adopted in the present study.

W. Naqvi et al.                                                                                                                                                                                                                                  Journal of Genetic Engineering and Biotechnology 23 (2025) 100503 

3 



3.2. Identification of differentially expressed genes

The final three studies were then subjected to pre-processing, 
following which the differentially expressed genes (DEGs) were ob
tained using the DESeq2 tool. All these tasks were underdone using the 
Galaxy server. The obtained results were in graphical and tabular form. 
From the list of DEGs obtained, a total of 7 genes were found to be up- 
regulated by setting up the p-adjusted value at less than 0.01 and log 2- 
fold chain value at 3Fig. 2, Table 2.

3.3. Feature selection and classification of DEGs using Machine learning 
algorithm

Feature selection algorithms namely Correlation, ReleifF, and In
formation Gain were used to improve the performance of the model by 
reducing the dimensionality of the data while retaining the most infor
mative features. The F measure was calculated using these three feature 
selection algorithms in conjunction. After feature selection classification 
was done, where a class is to be assigned to the data based on its feature. 
Classification was done using Logistic Regression, Random Forest, 
Random Subspace, Logistic Model Trees, and Classification via regres
sion. Overall, ReliefF and Correlation outperformed the InfoGain feature 
selection algorithm in terms of optimal Receiver Operating 

Characteristic (ROC) curve and Area under the ROC Curve (AUC), 
resulting in the highest accuracy. Out of the five classification methods 
used Random Subspace outperformed the other methods tested, yielding 
an accuracy of 80.64 % and F measure of 0.782. Thus through the 
following analysis, the model based on ReliefF and Correlation feature 
selection and Random Subspace classification was deemed the best 
Table 3.

3.4. Biomarker discovery using Artificial neural network

Following feature selection and classification, the artificial neural 
network was constructed using the pROC package, following the con
struction of ANN, ROC-AUC plots were made to quantify the overall 
performance of the model by calculating the area under the ROC curve. 
The higher the value of AUC the better will be the model’s performance. 
Before constructing the ANN, out of the 7 up-regulating genes one was 
removed i.e. C4A as it interfered with the accuracy and f-measure value. 
The ANN diagnostic model had six input layers and two hidden layers. 
The model’s performance was then evaluated and an AUC of 0.720 was 
obtained, indicating that the model had excellent classification accu
racy. After that, the generalized weight (gw) plots were constructed 
using the NeuralNet package of R and analyzed, which depicted that 
while keeping all the attributes constant, the genes PRRC2A and 
HLADRB5 were found to be positively regulated while all the remaining 
genes were being negatively regulated Fig. 3. After analyzing the 
generalized weight plots, the ROC curve was constructed for further 
validation and lastly, out of the 6 biomarkers, only 1 was selected i.e. 
PRRC2A as it had the highest value Fig. 4.

4. Discussion

The RNA-Seq data analysis yielded valuable insights into potential 
biomarkers that could play important roles in disease diagnosis, prog
nosis, and therapeutic targeting. Galaxy server was used to identify 
differentially expressed genes associated with epilepsy. These genes 
appear to be promising candidates for additional research and validation 
as potential biomarkers. The analysis of differential gene expression 
assisted in identifying genes that are either being up-regulated or down- 
regulated. These genes provide important information on the underlying 

Table 1 
Details of the Three Datasets obtained from NCBI.

Accession 
Number

Sample 
Size

Condition No of 
Patients

No of 
Control

Citations

GSE190451 6 Epilepsy 3 3 − -
GSE140393 6 Epilepsy 3 3 36

GSE134697 19 Epilepsy 17 2 37

Fig. 2. Volcano plot depicting the differentially expressed genes obtained 
through DESeq2. Where x-axis represents the log 2 (fold chain) value and y-axis 
represents the − log10 (adjusted p value). Blue coloured dot represent the 
down-regulated genes, red coloured dot represent up-regulated genes and grey 
coloured dot represent the non-significant genes.

Table 2 
List of the 7 up-regulating genes obtained after setting up the log 2-fold chain 
value at 3 and p-adjusted value at less than 0.01.

Gene ID Gene Name log2(FC) P-adj

ENSG00000204469 PRRC2A 3.228347498 2.84E-06
ENSG00000198502 HLA-DRB5 3.943874933 4.00E-06
ENSG00000170290 SLN 3.061719734 5.31E-06
ENSG00000281181 Novel gene 3.965287116 3.43E-05
ENSG00000162747 FCGR3B 3.069284479 7.10E-05
ENSG00000244731 C4A 3.092539827 0.000259113
ENSG00000280614 Novel gene 3.303061069 0.001035682

Table 3 
Values of the feature selection methods used for the classification of the seven 
hub genes. Out of the seven genes, one gene i.e. C4A was removed as after the 
feature selection algorithm it yielded the lowest values.

Gene Name ReliefF InfoGain Correlation

PRRC2A 0.046 0 0.383
FCGR3B 0.034 0 0.841
HLA-DRB 0.013 0.271 0.287
ENSG00000280614 

Novel Gene
0.010 0 0.256

ENSG00000281181 
Novel Gene

0.010 0 0.247

SLN 0.006 0.341 0.232
C4A − 0.002 0 0.287
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Fig. 3. Image showing response of genes demonstrated through generalized weights (GW) plot of differentially expressed genes constructed using NeuralNet package 
of R. The response of genes PRRC2A and HLADRB5 is seen to be positively regulated, SLN, ENSG00000281181 and ENSG00000280614 are found to be negatively 
regulated, whereas the response of FCGR3B is neutral.
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molecular mechanisms that contribute to the disease’s pathogenesis55. 
Furthermore, machine learning algorithms were used to create predic
tive models that can distinguish between disease and healthy samples 
based on the expression levels of selected genes. These models per
formed well, implying that these biomarkers could be used to develop 
diagnostic or prognostic tests. The study revealed PRRC2A as a potent 
biomarker in epilepsy. PRRC2A stands for Protein-rich coiled coil-2A 
genes. They are also known as BAT2 genes. The family of BAT genes is 
found close to the TNF alpha and TNF beta genes. These genes are all 
found to be present in the class III region of the human major histo
compatibility complex. This gene has also been linked to the develop
ment of rheumatoid arthritis56. SNP stands for Single Nucleotide 
Polymorphisms and are the most common forms of genetic variations 
found within an individual. They contribute to genetic diversity but 
their role is not just restricted to this. These variations occur in either the 
coding or non-coding regions of the gene. These variations affect the 
functioning of the gene and thereby promote disease susceptibility. 
Hence various genotyping methods are used to map the disease-causing 
genes57. In the case of PRRC2A, certain SNP’s are found to be associated 
with the development of rheumatoid arthritis. In one study it was 
identified that SNPs are linked to RNA-modified RA-susceptible genes. 
The SNP influences gene expression in blood cells and alters the protein 
levels which eventually contribute to the development of rheumatoid 
arthritis. For instance, SNPs were found to be associated with the 
expression of genes PADI2 and TRAF1 where PADI2 is involved in 
producing citrullinated proteins targeted by RA-specific antibodies 
while TRAF1 regulates the inflammation and RA disease activity. These 
SNP’s alter the level of protein’s TFF3, IL21, and HLA-DQA2. These 
proteins take part in the immune response and have altered levels in RA 
patients58. N6-methyladenosine (m6A) is the most common internal 
mRNA modification in eukaryotes. A series of enzymes, including m6A 
methyltransferases, demethylases, and m6A-specific binding proteins, 
dynamically regulate m6A modification. The discovery of new m6A- 
specific binding proteins in neural chelps helps in better understand
ing the role of 6A modification in the development of neurological dis
orders59,60. PRRC2A and PRRC2C were identified as possible m6A- 
binding proteins. PRRC2A was found to be more abundant in all types 
of neural cells than PRRC2C61. SNP’s in the PRRC2A gene is found to be 
associated with multiple sclerosis62. PRRC2A is an m6A reader which is 
the methylation of binding proteins that function by down-regulating 
genes. In one such study, it was seen that numerous oligodendroglial- 
specific genes were down-regulated. One particular gene was Olig2 
which stands for oligodendrocyte transcription factor 2 and controls 
OPC specification, differentiation, and myelination. Mouse model 
studies exhibited that knockout of PRRC2A resulted in hypomyelination 
and cognitive defects63 . SNP’s of PRRC2A are found to be associated 
with various types of cancers such as breast cancer, lung cancer, 

hepatocellular carcinoma, and non-Hodgkin lymphoma64. High levels of 
PRRC2A are characterized by CNVs and DNA methylation65. High levels 
of PRRC2A correlate with a high alpha-fetoprotein level and poor dif
ferentiation grade64. The variant of PRRC2A is involved in the cell 
proliferation and TGF-β signaling pathway. Knockdown of PRRC2A 
inhibited the proliferation, migration, and invasion of HCC cells64. The 
tumor immune microenvironment plays a major role in the progression 
and metastasis of cancer including HCC66. CD 8 T-cell destroys the 
tumor cells through the action of perforins and granzymes67. Studies 
reveal that PRRC2A strengthens the microenvironment of HCC cells by 
barricading them from the entry of CD8 T cells68. Tumour cells express 
ligands that can bind with corresponding proteins on the T cell which 
prevents the secretion of cytokines. This eventually leads to T-cell 
exhaustion. PD-1, CTLA-4, and CD160 are some of the receptors affected 
by this condition64,69. PRRC2A is also found to be correlated with Type 1 
Diabetes. PRRC2A gene contains microsatellite repeats and missense 
polymorphisms70. These variations are found to be linked with the 
development of Type 1 Diabetes. High levels of PRR2CA are linked with 
a significantly enriched PI3K/AKT signalling pathway. This pathway 
regulates the immunity of an individual. This pathway is initiated by 
either a BCR or TCR and regulates lymphocyte differentiation. High 
levels of PRRC2A are correlated with enhanced functionality of patho
genic immune cells like effector memory T cells, NK cells, and Plasma 
cells71. Neurotransmitters like acetylcholine and catecholamines 
modulate the immune system. They do so by binding to receptors pre
sent in monocytes and lymphocytes. Both of these phenomena lead to an 
imbalanced immune homeostasis in Type 1 Diabetes70,72.

5. Conclusion

Epilepsy is a serious neurological disorder affecting millions world
wide. This study aimed to identify differentially expressed genes (DEGs) 
in epilepsy patients, where a gene is considered differentially expressed 
if its expression level changes under specific conditions. Using the 
DESeq2 pipeline, datasets from GEO were analyzed, revealing seven up- 
regulated genes. These genes then underwent feature selection before 
being processed through artificial neural networks. Generalized weight 
(GW) graphs were generated, identifying PRRC2A and HLADRB5 as 
positively regulated, with PRRC2A showing the highest value. These 
findings suggest that PRRC2A could serve as a potential biomarker for 
epilepsy. However, while these results are promising, extensive experi
mental validation is necessary. Given that machine learning models are 
prone to biases, rigorous testing is essential to confirm the functional 
role of these biomarkers.
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